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Shear-induced textural transitions in flow-aligning liquid crystal polymers

Dana Grecov and Alejandro D. Rey*
Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, Quebec, Canada H3A 2B2

~Received 16 May 2003; published 31 December 2003!

The equations of nematodynamics are formulated, solved, and used to model textural transformations in
sheared thermotropic flow-aligning nematic polymers. The solutions are classified and characterized using
analytical, scaling, and numerical methods. It is found that as the shear rate increases, the pathway between an
oriented nonplanar state and an oriented planar state is through texture formation and coarsening. The two
shear-rate dependent dimensionless numbers that control the texture formation and coarsening process are
Ericksen Er and Deborah De numbers. The emergence of texture is independent of the Deborah number, and
occurs at Er5104. As the shear rate increases and Er.104 the first texture that arises is a defect lattice. Further
increases of the shear rate bring De close to 1, ignite the coarsening processes, and replace the defect lattice
with a defect gas. The smallest texture length scale, t occurs at the defect lattice-defect gas transition. In the
defect lattice regime the texture length scale decreases with increasing shear rate as, t}(ġ2a)21/2, while in
the defect gas regime it increases as, t}„ġ2bA(ġ2a)2c…21. Finally when De.2, an oriented monodomain
state emerges, and the texture vanishes since coarsening overpowers defect nucleation. It is found that the
texture transition cascade unoriented monodomain⇒defect lattice⇒defect gas⇒oriented monodomain
is remarkably consistent with the experimentally observed textural transitions of sheared lyotropic nematic
polymers.

DOI: 10.1103/PhysRevE.68.061704 PACS number~s!: 61.30.Jf, 61.30.Cz, 61.30.Vx, 47.50.1d
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I. INTRODUCTION

Nematic liquid crystals~NLCs! are textured, anisotropic
viscoelastic materials@1#. Their mechanical behavior i
greatly influenced by the presence of textures, or spatial
tribution of defects@2,3#. Since the rheological materia
functions of NLCs are functions of the underlying textur
the role of shear on the nucleation and coarsening of text
needs to be better understood.

The role of shear on texture formation and texture coa
ening is greatly affected on the flow properties of NLCs@1#,
the molecular weight~i.e., low-molar mass or polymeric!,
and the class of NLC~i.e., lyotropic or thermotropic@4#!.
Figure 1 shows a schematic of the molecular geometry,
sitional disorder, and uniaxial orientational order of rigid r
nematic polymers. The partial orientational order of the m
lecular unit axisu is along the average orientation given b
the directorn (n•n51). The shear flow behavior and rheo
ogy of nematic liquid crystals~NLCs! depend on the sign
and magnitude of the reactive parameterl, which is the ratio
of the flow aligning effect of the deformation rate and t
tumbling ~rotational! effect of the vorticity@4#. For rodslike
NLCs it is known thatl.0 @1#. When l.1 the material
flow aligns close to the velocity gradient direction since t
rotational effect of vorticity is overcome by deformatio
When 0,l,1 the director does not align close to the v
locity gradient direction because the rotational effect of
vorticity dominates over the aligning effect of the deform
tion. Materials withl.1 display the flow-aligning mode
For thermotropic low-molecular mass nematics the o
mechanism that leads to nonaligning behavior is the prox
ity to the smecticA phase@5#. It has been shown that fo
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example 8CB (48-n-octyl-4-cyanobiphenyl) is a shear flow
aligning nematic at high temperatures but as the tempera
approaches the nematic-smecticA transition temperature, the
material loses its ability to orient with the flow and out-o
plane orientation and defect nucleation is likely to occur@5#.
Hydroxy-propyl cellulose in suitable solvents is a choleste
lyotropic liquid crystal polymer and it exhibits nonalignin
behavior at low shear-rates and flow-aligning behavior
high shear rates@4#. No systematic data that show that the
motropic liquid crystals, such as Vectra@6#, are nonaligning
materials, has been presented. At present there appears
a consensus that thermotropic nematic polymers are fl
aligning @7#.

FIG. 1. Schematic of the molecular geometry, positional dis
der, and uniaxial orientational order of rigid rod nematic polyme
~NPs!. The partial orientational order of the molecular unit axisu is
along the average orientation given by the directorn (n•n51).
©2003 The American Physical Society04-1
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Textures are spatial distributions of defects. Defects
classified according to dimensionality (D) in terms of points
(D50), disclination lines (D51), and inversion walls (D
52). Disclination lines can have singular or nonsingu
cores@2#. The charge of a disclination line is defined by
sign (1,2) and a magnitude~1/2,1, . . . !. The sign indicates
the sense of rotation when encircling the defect, and
magnitude, the amount of rotation. Inversion walls are tw
dimensional nonsingular defects, in which spatially localiz
director gradients occur. Figure 2~a! shows an schematic of
twist inversion wall@1# in which the director rotates byp
radians when traversing the wall. The continuous direc
rotation is localized in a thin region that defines the invers
wall thicknessj. The surface tension of the wall isK/j,
where K is the Frank elastic constant@8#. Inversion walls
form either loops, are attached to other defects, or to
bounding surfaces. Once nucleated, inversion walls
shrink, pinch, or annihilate with other walls or other defe
@9#. All these nucleation and coarsening defect proces
have an impact on the viscoelastic response of the sys
since elastic and dissipative mechanisms are involved. M
els and theories of nucleation and coarsening of textures
der flow is a topic of current interest.~see, for example, Refs
@1,9–13#!. The anisotropic properties of nematics give rise
novel field-induced reorientation mechanisms and de
nucleation@8,14,15#. The emergence of field-induced inve
sion walls in several lyotropic and thermotropic nema
polymers has been well characterized@1,10,16–20#. Typi-

FIG. 2. ~a! Schematic of a twist inversion wall in which th
director rotates byp radians when traversing the wall.~b! Sche-
matic of the unit sphere description of the director field@10# with
respect to rectilinear simple shear flow. Thex axis is the flow di-
rection, they axis the velocity gradient direction, and thez axis the
vorticity axis. The equator lies in the shear (x-y) plane and the
north pole and the south pole are located on the vorticity (z) axis.
The director trajectory for two twist inversion walls, of chargeC
521, andC511, is according to the rotation sense in going fro
the vorticity axis to the flow direction.
06170
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cally inversion walls in NLCs under external fields arise b
cause two equivalent reorientation~rotation! mechanisms are
possible. The net result is a field-aligned sample with trap
thin layers that separate regions of clockwise rotations fr
those of anticlockwise rotation. In many nematic polyme
the inversion walls are organized into long-lived period
structures~i.e., defect lattice! @1,16,21–23#. Inversion walls
are classified according to the elastic~i.e., splay, bend, and
twist! modes of deformation@8#. In this paper we restrict the
discussion to twist inversion walls@24#, in which the director
n lies in a plane parallel to the wall. Twist inversion walls a
characterize by a topological chargeC, given by

C5
Dc

p
, ~1!

whereDc is the total director rotation while traversing th
wall. As in disclination lines, the sign of the charge defi
the sense of rotation. Since sheared flow-aligning nem
polymers orient very close to the velocity direction, an i
version wall formation is expected if the initial orientation
orthogonal to the imposed flow. In addition, if the flow
aligning angle is sufficiently small, say less than several
grees, the walls are essentially twist walls. Figure 2~b! is a
schematic of the unit sphere description of the director fi
@25#, where thex axis is the flow direction, they axis the
velocity gradient direction, and thez axis~out of the plane of
the paper! the vorticity axis. The equator lies in the she
(x-y) plane and the north pole and the south pole are loca
on the vorticity (z) axis. The figure shows the director tra
jectory for two twist inversion walls, of chargesC521 and
11, according to the rotation sense in going from the v
ticity axis to the flow. In this paper we use shear-induc
generation of twist inversion walls as a model for textu
generation.

As mentioned above, each class of liquid crystals displ
a distinguishing number of textures. Textures exist in sm
molecule nematics, both flow aligning and tumbling@26–
28#, but are much more persistent in LCPs, due to the h
viscosities of the latter@4#. As mentioned above, in both
thermotropic and lyotropic liquid crystal polymers~LCPs!, it
is known that defects influence the microstructure and rhe
ogy @29#. The connection between textures and rheology
lyotropic LCP has been experimentally characterized@30–
34#. For thermotropic LCPs less progress has been made
a consequence of experimental difficulties@7#. However,
there are studies of the textural transitions in thermotro
LCPs ~TLCPs! @29,35–37#.

The theoretical and computational framework for t
widely reported flow-induced texture and pattern formati
phenomena in liquid crystal materials has been investiga
in several studies@1#. For low-molecular weight liquid crys-
tals@38–40#, it is found that for low shear rates the flow ma
become unstable when the director is perpendicular to
shear plane. Furthermore, in Ref.@41# this study is extended
to the shearing flow of tumbling LCPs. Moreover, a textu
involving twist distortions has been predicted in a nonline
fast flow of a flow-aligning nematic@42#. Thus the condition
4-2
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SHEAR-INDUCED TEXTURAL TRANSITIONS IN FLOW- . . . PHYSICAL REVIEW E 68, 061704 ~2003!
l.1 is not guaranteed that a uniform molecular alignm
will emerge, as previously believed.

Numerical integration of the classical Leslie-Ericks
nematodynamics equations@43,44# has shown that band for
mation during the start-up of sheared LCPs can be expla
by twist distortions which dominate in flow over splay an
bend. A very complete analysis of the symmetry-break
transient states with the director out of the shear plane, wh
partially coexist with the in-plane states, is given in Ref.@45#
for rodlike molecular weight and polymeric LCs in simp
shear flow, using a nonlinear relaxation equation for
alignment tensor. The hydrodynamics induced symmet
and broken symmetries for uniaxial nematic liquid cryst
are presented in Ref.@46#. A computational simulation, using
a tensorial theory, is used in Ref.@47# to study the spatia
inhomogenity of the director field, which plays an importa
role in a highly textured thermotropic LCP. The flow in lyo
tropic LCPs has been investigated through numerical si
lations, in several studies, using Landau–de Gennes th
@11#, Doi-Marruci-Greco theory@48#, and extensions of Do
theory for nematic polymers@49#. They all capture importan
aspects of flow-induced pattern formation. The aim of t
paper is to extend the study of flow-induced texture gene
tion to flow-aligning thermotropic polymeric NLCs.

The specific objectives of this paper are~1! to elucidate
the mechanisms that control textural transformation
sheared, flow-aligning, rigid-rod, nematic polymers, und
isothermal conditions;~2! to characterize how the textur
length scale depends on the imposed shear rate; and~3! to
explain the observed@31,32# shear-induced texture casca
unoriented monodomain⇒defect texture⇒oriented monodo-
main using the classical equation of nemato-dyanmics
conjunction with analytical, scaling, and computation
methods.

This paper is organized as follows. In Sec. II we pres
the governing equations that describe the microstructure
polymeric liquid crystals under arbitrary flow, and the n
merical procedure. Analytical results are presented in S
III. In Sec. IV we present, classify, and discuss the simu
tion results. Section V discusses the essence of the pred
results in conjunction with relevant experimental resu
Section VI presents the conclusions.

II. THEORY AND GOVERNING EQUATIONS

In this section, we present the Landau–de Gennes th
for nematic liquid crystals, and the parametric equations u
to describe liquid crystalline polymers texture formation.
mentioned above, the theory is well suited to simulate t
ture formation since defects are nonsingular solutions to
governing equations. In this paper we study a rectilin
simple start-up shear flow with Cartesian coordinates,
shown in Fig. 3~a!. The lower plate is fixed and the uppe
plate starts moving att50 with a known constant velocity
V; the plate separation isH. The z axis is coaxial with the
vorticity axis and the shear plane is spanned by thex-y axes.

A. Landau–de Gennes mesoscopic model for liquid
crystal polymers

The microstructure of liquid crystal polymers~LCPs! is
described conveniently in terms of a second order, symme
and traceless tensor order parameterQ @8#:
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Q5E S uu2
I

3Dvd2u, ~2!

whereu is the unit vector parallel to the rodlike molecule
~see Fig. 1!, I is unit tensor, andv is the orientation distri-
bution function. The symmetric and traceless tensor or
parameterQ can be expressed by

Q5SS nn2
1

3
I D1

1

3
P~mm2 ll !, ~3!

where the following restrictions apply:

Q5QT, tr~Q!50, 2
1

2
<S<1, 2

3

2
<P<

3

2
, ~4!

n•n5m•m5 l• l51, nn1mm1 ll5I5F 1 0 0

0 1 0

0 0 1
G .

~5!

The uniaxial directorn corresponds to the maximum eige
value §n52/3S, the biaxial directorm corresponds the sec
ond largest eigenvalue§m52 1/3 (S2P), and the second
biaxial director l (5n3m) corresponds to the smallest e
genvalue§,521/3(S1P). The orientation is defined com
pletely by the orthogonal director triad~n, m, l!. The mag-

FIG. 3. Definition of the flow geometry and coordinates syst
for simple shear flow.~a! The lower plate is at rest and the upp
plate moves in thex direction with a constant velocityV, H is the
gap separation.~b! Cartesian coordinate system withx the flow
direction,y the velocity gradient direction, andz the vorticity axis.
The directorn is defined by the tilt angleu and the twist anglef.
4-3
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nitude of the uniaxial scalar order parameterS is a measure
of the molecular alignment along the uniaxial directorn, and
is given asS5 3/2 (n•Q•n). The magnitude of the biaxia
scalar order parameterP is a measure of the molecular align
ment in a plan perpendicular to the direction of uniaxial
rectorn, and is given byP53/2(m•Q•m2 l•Q• l).

The Landau–de Gennes theory of liquid crystals@50# de-
scribes the viscoelastic behavior of nematic liquid cryst
using the second moment of the orientation distribution fu
tion, known as the tensor order parameterQ. The governing
equations for liquid crystal flows follow from the dissipatio
function D:

D5ts:A1mkTQ•Q̂, ~7!

wherets is the viscoelastic stress tensor,m is the concentra-
tion of molecules per unit volume,k the Boltzmann constant
andT the absolute temperature,A is the symmetric traceles
rate of deformation tensor,Q is the molecular field, andQ̂ is
the Jaumann derivative of the tensor order parameter, g
by

Q̂5
]Q

]t
1~v•“ !Q2W•Q1Q•W, ~8a!

W5
1

2
~“v2“vT!, ~8b!

A5
1

2
~“v1“vT!, ~8c!

~mkT!Q52F dF

dQG [s]

5F ] f

]Q
2“•

] f

]“QG [s]

, ~8d!

where F is the total free energy andf is the free energy
density:

f 5 f sr1 f lr , ~9a!

f sr5~mkT!F1

2 S 12
1

3
U DQ:Q2

1

3
UQ:~Q"Q!

1
1

4
U~Q:Q!2,G ~9b!

f lr5
L1

2mkT F $“Q:~“Q!T%1
L2

2ckT
~“•Q!•~“•Q!G , ~9c!

where f sr is the homogeneous~short range! energy density,
f lr is the gradient~long range! energy density,U53T* /T is
the nematic potential,T* is the isotropic-nematic transitio
temperature,L1 and L2 are theLandau coefficients, and th
superscript@s# denotes symmetric and traceless. Using
Landau–de Gennes free energy density, the molecular fie
given by
06170
-

s
-

en

e
is

2F dF

dQG [s]

5~mkT!Q52~mkT!F S 12
1

3
U DQ2UQ•Q

1UH ~Q:Q!Q1
1

3
~Q:Q!I J G1~mkT!

3F L1

mkT
“

2Q1
1

2

L2

mkT S“~“•Q!

1$“~“•Q!%T2
2

3
tr$“~“•Q!%I D G , ~10!

and contains short-range~homogeneous! and long-range
~gradient! contributions. Expanding the forces (ts, Q̂) in
terms of fluxes~A, mkTQ), and taking into account thermo
dynamic restrictions and the symmetry and tracelessnes
the forces and fluxes we can obtain the equations forts and
Q̂. In this paper we concentrate on the dynamics ofQ, and
hence we assume that the velocity field of the shear flow
known and given by

V5~ ġy,0,0!, ~11!

where the constant shear rate is given byġ5V/H. The dy-
namics of the tensor order parameter is given by the follo
ing sum of flowF, short-rangeQsr, and long-rangeQ lr con-
tributions @51#:

Q̂5F~Q,“v!1Q, ~12a!

Q5Qsr
„Q,D̄r~Q!…1Q lr~“Q!, ~12b!

~i! flow contributionF,

F~Q,“v!5
2

3
bA1bFA•Q1Q•A2

2

3
~A:Q!I G

2
1

2
b@~A:Q!Q1A•Q•Q1Q•A•Q1Q•Q•A

2$~Q•Q!:A%I #, ~13!

~ii ! short-range elastic contributionQsr,

Qsr
„Q,D̄r~Q!…526D̄rF S 12

1

3
U DQ2UQ•Q

1UH ~Q:Q!Q1
1

3
~Q:Q!I J G , ~14!

and ~iii ! long-range elastic contributionQ lr,

Q lr~“•Q!56D̄rF L1

mkT
“

2Q1
1

2

L2

mkT S“~“•Q!

1$“~“•Q!%T2
2

3
tr$“~“•Q!%I D G , ~15!
4-4



iv-
to
is
ai
rm

iti
e

der
der
.
ect

oci-

tals

the

s:

ons
eter

n
bers

pro-

he
qui-
rs
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D̄r5
Dr

S 12
3

2
Q:QD 2 , ~16!

whereD̄r is the microstructure dependent rotational diffus
ity, Dr is the pre-averaged rotational diffusivity here taken
be constant andb is a thermodynamic parameter which
not determined by molecular shape since our model cont
no specific molecular information. The dimensionless fo
of the governing equation for the tensor order parameterQ is

ErQ̂* 5ErF2

3
bA* 1bFA* •Q1Q•A* 2

2

3
~A* :Q!I G

2
1

2
b@~A* :Q!Q1A* •Q•Q1Q•A* •Q1Q•Q•A*

2$~Q•Q!:A* %I #G2
3

U
•

R

S 12
3

2
Q:QD 2

3F S 12
1

3
U DQ2UQ•Q1UH ~Q:Q!Q

1
1

3
~Q:Q!I J G1

3

S 12
3

2
Q:QD 2 F“* 2Q

1
1

2
L2* S“* ~“* •Q!1$“* ~“* •Q!%T

2
2

3
tr$“* ~“* •Q!%I D G, ~17!

t* 5ġt5g, A* 5
A

ġ
, W* 5

W

ġ
,

“* 5H“, L2* 5
L2

L1
, ~18!

where the star superscript denotes dimensionless quant
ġ is the shear rate, andg is the strain. The dimensionless fre
energy densityf * is given by

f * 5
3

U
f sr* 1

3

R
f lr* . ~19!

The dimensionless numbers Er~Ericksen number! and en-
ergy ratioR @50# are given by

Er5
ġH2h

L1
, ~20a!

R5
3H2mkT*

L1
, ~20b!

h5
mkT*

2Dr
, ~20c!
06170
ns

es,

and are the ratio of viscous flow effects to long-range or
elasticity, and short-range order elasticity to long-range or
elasticity, respectively. Hereh is a characteristic viscosity
The Deborah number De, or the ratio between flow eff
and short range energy effect, is given by

De5
Er

R
5

ġ

6Dr
, ~21!

and its magnitude controls the amplitude of effects ass
ated with the scalar order parameters.

The Landau–de Gennes model for nematic liquid crys
has an external length scalel e and an internal length scalel i
as follows:

,e5H, , i5A L1

3mkT*
, ,e@, i . ~22!

It should be noted that the external length scale governs
directors’ orientation~n, m, l! while the internal length scale
governs the scalar order parameter (S, P). The externalte
and internalt i time scales of model are ordered as follow

te5
hH2

3L1
, t i5

1

Dr
, te@t i . ~23!

The external time scale describes slow orientation variati
and the internal length scale describes fast order param
variations. Finally the presence of shear flow of rateġ intro-
duces a flow time scalet f :

t f5
1

ġ
, ~24!

and a flow length scale, f :

, f5Ad

ġ
, d5

L1

h
, ~25!

whered is the orientation diffusivity. The relation betwee
the time scales, length scales and the dimensionless num
are

Er5
te

t f
5

H2

, f
2 , ~26a!

R5
te

t i
5

H2

, i
2 , ~26b!

De5
t i

t f
5

, i
2

, f
2 . ~26c!

Related to the values of Deborah numbers we have two
cesses.~a! Orientation process (De!1): the time scale or-
dering ist i,t f,te , the orientation processes dominate t
rheology, and the scalar order parameter is close to its e
librium value. In this regime the flow affects the eigenvecto
of Q, but does not affect the eigenvalues ofQ. ~b! Molecular
4-5
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process (De.1): the time scales ordering ist f,t i,te , and
the flow affects the eigenvectors and eigenvalues ofQ.

B. Computational methods and auxiliary data

The model equations~17! are a set of five coupled non
linear parabolic partial differential equations. The equatio
are solved using Galerkin finite elements for spatial discr
zation and a fourth order Runge-Kutta time adaptive meth
Convergence and mesh independence were established
cases using standard methods. Spatial discretization wa
diciously selected taking into account the length scale of
model. The selected adaptive time integration scheme is
to efficiently take into account the stiffness that rises due
the disparity between time scale:t i!te .

The boundary conditions forQ are

Qs~y* 50!5Qs~y* 51!5SeqS nsns2
I

3D , ~27a!

ns5~0,0,1!, ~27b!

Seq5
1

4
1

3

4
A12

8

3U
, ~27c!

describing a fixed director orientation along the vortic
axis, a uniaxial state with the scalar order parameter equ
its equilibrium value. The initial state is assumed to
uniaxial and at equilibrium. The orientation of the director
t50 is assumed to be parallel tons , with thermal fluctua-
tions introduced by infinitesimal Gaussian noise. The th
modynamic parameterb and the nematic potential are use
to calculate the reactive parameterl, which indicates if the
system is flow aligning or not. In this paper the values
these parameters are chosen to assure thatl,1 ~flow-
aligning system!: U54, b51.2. The selected range
for the dimensionless parameters are 103,R,106,
0,Er,23107, and 0,De,20.

III. ANALYTICAL RESULTS

A. Orientation modes predicted by the Leslie-Ericksen model

The most successful and established theory applicab
slow uniaxial nematic flows is that of Leslie and Ericks
@52#. It was shown@50# that when the ratio between th
Ericksen number andR is insignificant~i.e., slow flow!, the
Landau–de Gennes model reduces to the Leslie-Erick
~LE! theory, when the splay and bend elastic modulus@see
Eqs.~28!# are equal. Since the Landau–de Gennes mode
sufficiently slow flows becomes the LE model, it is useful
use the easily obtained predictions of the LE model in or
to explain and classify the response of the more complica
Landau–de Gennes model. We note that all our comp
tional results discussed in the following sections were
tained using the original Landau–de Gennes equations~17!.

As mentioned above the LE theory neglects the sh
range order elasticity, and hence it is unable to describe
changes of the scalar order parameter due to the impos
of sufficiently strong flow. Consequently, in this theory, t
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microstructure is described by the directorn and the scalar
order parameterS is assumed to remain constant, that
unaffected by the flow, and always equal to its value at eq
librium: S5Seq, while the biaxial order parameter P is equ
to zero. The total extra-stress tensortt and the director bal-
ance equation in the LE theory@52# are

tt5pd2
] f n

~]¹n!T •“n1a1A:nnnn1a2nM1a3Mn1a4A

1a5nn•A1a6A•nn, ~28a!

05Ge1Gv, ~28b!

Ge52n3S ] f n

]n
2“•

] f n

~]¹n! D ,

Gv52n3~g1M1g2A•n!, ~29a!

g15a32a2 , g25a62a5 ~29b!

where f n is the Frank long-range energy density, given
terms of the following splay (K11), twist (K22), and bend
(K33) modes:

2 f n5K11~“•n!21K22~n•“3n!21K33unm3“3nu2.
~30!

A is the rate of deformation tensor,M is the Jaumann de
rivative of the directorn:

M5ṅ2n•W. ~31!

$a i%, i 51 and 6, are the six Leslie viscosities coefficien
where only five of these are independent due to Paro
relation @53#

a62a55a21a3 . ~32!

In the Landau–de Gennes model used here@Eq. ~17!# K11
5K33. To break the splay-bend equality higher order ter
are required, but for the present paper they are unneces
because the phenomena of interest is independent of this
isotropy. In the LE theory the reactive parameterl that con-
trols flow alignment is given by

l52
g2

g1
52

a21a3

a32a2
. ~33!

As mentioned above, the characteristic flow behavior o
nematic liquid crystal depends only the sign and magnitu
of the reactive parameter or equivalently on the Leslie v
cosity coefficientsa2 anda3 . When shearing a nematic liq
uid crystal two different types of flow behavior are possib
depending on the signs ofa2 anda3 . For rodlike molecules,
a3 is always negative, whilea2 can be negative for flow
alignment systems (l.1) or positive for nonalignment sys
tems@54# (0,l,1). The flow-alignment angle is known a
the Leslie angleual , and is given by
4-6
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cos 2ual5
1

l
~34!

and exists forl.1. As seen from Eq.~34!, for shear-
aligning rods the flow tends to align the average molecu
orientation along the flow direction.

Next we briefly present the LE predictions to simple sh
when the director is along the vorticity that are relevant
this paper. In Cartesian component form, the director is w
ten as@Fig. 3~b!# n5(cosu cosf,sinu,cosu sinf), whereu
is the tilt angle andf is the twist angle. The in-plane orien
tation corresponds tof50, and the out-of-plane orientatio
corresponds tofÞ0. The velocity gradient for shear can b
assumed uniform across the sample:v5(ġy,0,0). Replacing
the director and velocity fields in Eqs.~28! in the angular
momentum balance equation~29!, and neglecting the Fran
elasticity, the following coupled nonlinear differential equ
tions result@52#:

~a32a2!
du

dt
1ġ~a3 cos2 u2a2 sin2 u!cosf50,

~35a!

~a32a2!cosu
df

dt
2ġa2 sinu sinf50. ~35b!

Figure 4 shows the phase plane trajectories in theu-f plane
for l51.43, obtained by solving Eqs.~36!. The stable (S1)
sink nodes correspond to the LeslieuL angle, and the stable
sink node (S2) to 2uL while the twist angle is equal top.
The vorticity direction (z axis! is an unstable saddle poin
~Fig. 4!. We can see that if the director is initial aligned alo
the vorticity direction (u50, f590), the director can take

FIG. 4. Phase plane trajectories in theu-f plane forl51.43.
The stable (S1) sink nodes correspond to the LeslieuL angle, and
the stable sink node (S2) to 2uL while the twist angle is equal top.
The vorticity direction (z axis! is an unstable saddle point. If th
director is initial aligned along the vorticity direction, (u50,f
590) the director can take trajectory 1, to the stable sinkS1 corre-
sponding touL and f50 or trajectory 2, to the stable sinkS2 ,
corresponding to the antipode2uL andf5p.
06170
r

r

t-

trajectory 1 to the stable sinkS1 corresponding touL and
f50 or trajectory 2 to the stable sinkS2 , corresponding to
the antipode2uL andf5p.

Introducing elasticity allows for two new features. If Er
sufficiently low, flow is weak, and the boundary effects s
bilize the orientation along the vorticity direction. If Er i
sufficiently large the two equivalent flow attractors becom
dominant. In this case a director field aligned along the v
ticity axis may evolve to a unique attractor, or to both attra
tors. Since evolving to both attractors introduce further d
tortions, these modes may arise at higher Er. In the prese
of one attractornx is symmetric, while in the equipresence
two attractors it is antisymmetric. Multisampling of the tw
attractors gives rise to a layered mode. Thus the LE mo
that subjecting a NLC withn5(0,0,1) the following solution
multiplicity: ~a! Homogeneous mode (H):0,x,H, n
5(0,0,1). ~b! Symmetric mode (S): 0,x,H, sgn(nx)51.
~c! Antisymmetric mode (AT):0,x,H/2, sgn(nx)51; H/2
,x,H, sgn(nx)52. ~d! Defect lattice mode (DL):0,x
,,, sgn(nx)51; ,,x,2,, sgn(nx)52, . . . .

sgn is the sign, and, is the layer thickness and where th
other trivially distinct cases are omitted for brevity. For e
ample the equivalentS mode to the one stated in~a! corre-
sponds to sgn(nx)52, and so on. Modes~a!-~b!-~c! have
been previously analyzed@55,56#. The symmetry breakings
~nonhomogeneous modes! are induced by the flow. The
minimum Ericksen number required for the nonhomog
neous modes~b!-~c!-~d! can be predicted using linear stab
ity analysis. For simplicity we assume the constant appro
mation (K115K225K335K), and neglect backflow
~hydrodynamic flow induced by orientation, for details s
Ref. @53#!. For a cell of thicknessH, under a constant shea
rate ġ, no backflow, and aligned along the vorticity (nz
51) at the bounding surfaces (y56H/2) the linear LE
equations for the twistw8 and tilt u8 angles measured from
the vorticity (z) axis are

K
d2u8

dy2 5a3ġw8, K
d2w8

dy2 5a2ġu8. ~36!

The equations admit the following multiplicity:

w85wo cosFnpz

H
1~n21!

p

2 G ,
u85uo cosFnpz

H
1~n21!

p

2 G , n51,2, . . . . ~37!

The n50 mode represents the symmetric mode,n51 the
antisymetric mode, andn.2 the defect mode. Thenth mode
exists when the Ericksen number satisfies

Er5
ġH2K

Aa2a3

.~np!2, ~38!

where we used a slightly different definition of the Ericks
number, to follow the classical results of Pieranski a
Guyon@57#. Starting with the director along the vorticity an
4-7
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D. GRECOV AND A. D. REY PHYSICAL REVIEW E68, 061704 ~2003!
with strong surface anchoring, neglecting backflow, when
Ericksen number is slightly greater thanp2, we can observe
the symmetric, antisymmetric or the defect solutions un
simple shear flow. Which solution is selected for a given
is determined by the basin of attraction of each mode,
shown below.

B. Single and multiple inversion walls

The steady LE equations including elasticity, and negle
ing back-flow for the tiltu and twistf angles are

K
d2u

dy2 51ġ~a3 cos2 u2a2 sin2 u!cosf, ~39a!

K cosu
d2f

dy2 52ġa2 sinu sinf. ~39b!

At sufficiently high shear ratesġ we can assume that the ti
angleu is aligned along the Leslie angleuL , and the latter
equation~39b! gives the steady sine-Gordon equation:

j2
d2w

dy2 5sinw, j5A K

ġua2uA
l21

l11
, ~40!

wherea2 was assumed to be negative, in accordance w
flow-aligning rod-like nematics@54#, wherej is the coher-
ence length or wall thickness. In terms of the flow thickne
introduced in Eq.~40!, the wall thickness is

j5s•, f , s5A h

ua2uA
l21

l11
, ~41!

wheres is a material constant of order one. The inversi
wall thicknessj5s•, f is inversely proportional to the shea
rate. An inversion wall solution to this steady sine-Gord
equation@58#, for w50 at y52`, and w5p at y51`,
and whose midplane is located aty5y0 is

tan
f

2
5expS ~y2yo!

j D . ~42!

Using Eq.~1! we find that for solution~42! the topological
charge of the inversion wall isC511. A positive charge
corresponds to anti-clockwise rotation for increasingy. The
correspondingC521 wall is

tan
p2f

2
5expS ~y2yo!

j D . ~43!

At the surfaces the director is anchored along the vortic
and inversion walls next to the surface will be called ha
walls since the rotation across in onlyp/2 radians.

The steady sine-Gordon equation also admits soliton
tice solutions, that represent an array of inversion wa
separated by a constant periodL. The periodic array of in-
version walls, of alternating charge is given by@58#

sinS u2
p

2 D5SNS y

jr
,r D , ~44a!
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L54jrJ~r!, ~44b!

where SN is the Jacobian elliptic function@58# of modulusr,
andL is the distance between walls. Figure 5~a! shows the
twist angle as a function ofỹ5y/j for r50.9999, and Fig.
5~b! the periodL as a function of the modulusr. As r.1, an
array of inversion walls appear, whose period increases
ponentially withr. The number of walls in a shear cell o
thicknessH is N(r)5H/J(r).

We have shown that when Er is high enough the non
mogenous modes exhibit the following inversion wall ph
nomena.~a! Symmetric mode (S): there are two half-walls a
the bounding surface. The net charge is always zero. If
top surface hasC521/2 the bottom surface has a char
C511/2. ~b! Antisymmetric mode~AT!: there are three
walls. The net charge is always zero. The surfaces have e
charge.~c! Defect lattice mode~DL!: there aren walls. The
original net charge is zero. Since, as shown below, w
coarsening and pinching processes take place in this m
and since charge is not conserved, the net charge when c
ening and pinching occur has to be computed.

C. Wall interactions and coarsening phenomena

Coarsening processes of inversion walls under shear
involve ~a! pinching @4#, ~b! a wall-bounding surface reac
tion, and~c! wall-wall annihilation. Wall pinching eliminates
an inversion wall by nucleating a defect pair, and will b
discussed in the next section since it involves spatial chan
in the scalar order parameterS. Wall-surface reactions and
wall-wall annihilation are driven by a decrease in the ene

FIG. 5. ~a! The twist angle as a function ofỹ5y/j for r
50.9999.~b! The periodL as a function of the modulusr. As r
.1, an array of inversion walls appear, whose period increa
exponentially withr.
4-8
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SHEAR-INDUCED TEXTURAL TRANSITIONS IN FLOW- . . . PHYSICAL REVIEW E 68, 061704 ~2003!
of the system. As in other defects, the topological charge
these two processes is conserved:

Ci1Cj⇒Ci 1 j , ~45!

where the subscript is the charge of the wall in the bulk o
the bounding surface. Recall that at the bounding surface
nonhomogeneous modes have an inversion wall. When
tails of two neighboring walls come into contact, the forc
of attraction between the walls drive the interaction lead
to a decrease in the number of walls. To estimate the forc
attraction between walls in these two coarsening proce
we derive a dynamical free energy per unit areaFa associ-
ated with Eq.~40!:

Fa5ġua2usinuLE
0

LFj2

2 S df

dy D 2

1cosfGdy. ~46!

For a train of inversion walls@soliton lattice solution~44a!#,
the integrand is a positive constantB greater than 1 (B
.1) @58#:

j2

2 S df

dy D 2

1cosf5B, ~47!

whose magnitude is related to the modulusr and hence to
the wall-wall separation distanceL54jrJ(r) as follows
@58#:

B511
2

r2 ~12r2!. ~48!

The force of attraction per unit areaG between two oppo-
sitely charged walls is then

G52
dFa

dL
52ġua2usinuLB. ~49!

Below we show that the simulations predict that in a range
Ericksen numbers, wall-wall and wall-surface coarsen
processes driven by attractive interactions take place.

IV. NUMERICAL RESULTS AND DISCUSSION

We next classify, characterize, and discuss the nume
solutions to Eqs.~17!, obtained using the auxiliary data~27!.
All transient results are shown as a function of strain:g
5ġt.

A. Classification of steady state solutions

In this section we present the main characteristics of
six type of steady state solutions predicted by the Landau
Gennes equations, for initial conditions and boundary con
tions along the vorticity direction. As shown above, the L
equations predict the existence of four stable steady s
modes. On the other hand, we find that as the Ericksen n
ber increases the Landau–de Gennes equations predic
existence of two additional stable steady state modes, as
lows: ~a! homogeneous mode (H), ~b! symmetric mode (S),
~c! antisymmetric mode~AT!, ~d! defect lattice mode~DL!,
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~e! defect gas mode~DG!, and ~f! planar mode (P). The
complete characterization of the six modes includes~1! the
symmetry of the twist angle profile,w(y* ), ~2! the net topo-
logical chargeC, and~3! the layer periodicity in the presenc
of multiple walls. The additional two modes for th
Landau–de Gennes equations arise because scalar
changes at sufficiently high De introduce coarsening
pinching processes.

Figure 6 shows the complete characterization of all
stable steady state solutions to Eq.~17! with auxiliary data
~27!, including representative computed visualizations, sy
metry properties of the twist angle profile, net topologic
charge due to the presence of inversion walls, and periodi
in the presence of an array of walls. The representative c
puted visualizations of the director field are forR5105. The
dark dots represent the inversion walls. By increasing
Ericksen number the following director symmetry transiti
cascade is observed: symmetric→antisymmetric
→symmetric or antisymmetric→asymmetric→symmetric or
antisymmetric. In terms of net charge the transition casc
is: C50→C50,6n(n51,2...)→C50,61. In terms of the
periodicity in the defect modes, the transition cascade
monotonic→periodic→defect aperiodic→monotonic. The
values of transition Ericksen numbers are~for R5105) ap-
proximately. ErHS570, ErSA5103, ErADL593103, ErDLDG
51.23105, and ErDLP51.83105, where the subscript indi-
cate the two modes involved in the transition: H
homogeneous-symmetric; SA, symmetric-asymmetric; AD
asymmetric-defect lattice; DLDG, defect lattice-defect g
DGP, defect gas-planar. The interval between two succes
critical Ericksen and Deborah numbers defines the basin
attraction of the shown mode. The main differences betw
the LE defect lattice mode obtained with the one const
approximation and fixed alignment angle approximatio
~see Eq.~44a!# and the computed Landau–de Gennes de
mode is that the former is periodic@see Eq.~44b! for the
periodL# with zero net charge (C50), while the latter ex-
hibits weak deviations from perfect periodicity, although t
net charge is zero because no coarsening process has
effect. The weak deviations from periodicity in the predict
Landau–de Genned solutions arise because of the elasti
isotropy (K22ÞK115K33) and because the equations a
fully coupled; this weak deviation is not significant in th
description of the essence of this mode, and hence we re
the defect lattice label. Since as mentioned above
Landau–de Gennes equations converge into the LE e
tions @with K115K33 when using Eq.~29!# the first four
modes~i.e., H-S-AT-DL ! are predicted by both theories. A
Er increases and De becomes closer to 1, wall pinching p
cesses emerge, and the solutions of both models diverge
the last two modes are only predicted by the Landau–
Gennes model. Hereafter we concentrate on the predictio
the Landau–de Gennes model since it allows for she
induced textural transformations. The defect gas and pla
modes that occur at higher Ericksen numbers are the resu
defect coarsening process. Since in one-dimensional sim
tions pinching extinguishes a wall without a defect p
nucleation, the net topological charge in the defect gas a
wall pinching is undetermined. In addition since coarsen
4-9
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FIG. 6. Characterization of all the stable steady state solutions to Eqs.~17! with auxiliary data~27!, including representative compute
visualizations, symmetry properties of the twist angle profile, net topological charge due to the presence of inversion walls, and p
in the presence of an array of walls, forR5105. The dark dots represent the inversion walls. By increasing the Ericksen numbe
following director symmetry transition cascade is observed: symmetric→antisymmetric→symmetric or antisymmetric→asymmetric
→symmetric or antisymmetric. In terms of net charge the transition cascade isC50→C50,6n(n51,2...)→C50,61. In terms of texture,
unoriented monodomain→defect lattice→defect gas→oriented monodomain. The values of transition Ericksen numbers are~for R5105)
approximately: ErHS570, ErSA5103, ErADL593103, ErDLDG51.23105, and ErDLP51.83105, where the subscript indicate the two mod
involved in the transition. HS: homogeneous-symmetric; SA: symmetric-asymmetric; ADL: asymmetric-defect lattice; DLDG: defect
defect gas; DGP: defect gas-planar.
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by wall-wall annihilation takes places, the periodicity of th
defect lattice is destroyed. The high shear rate planar m
differs from the low shear rate symmetric mode in that
symmetry and charge are undetermined, since the pl
mode is the result of multiple pinching processes. Since
objective of this paper is the characterization of textu
transformation under shear we restrict the discussion to
defect lattice, defect gas, and planar modes.

Figure 7~a! shows the steady state twistf and tilt u angles
as a function of dimensionless distancey* , for R5105, Er
573104 (De50.7). The figure represents typical angl
profiles for the defect lattice~DL! mode, with two inversion
walls in the bulk. At these relatively low Er no coarsenin
takes place, the net charge is zero, and the director is p
odic. Figure 7~b! shows the steady state twistf and tilt u
angles as a function of the dimensionless distancey* , for
R5105, and Er51.23105 (De51.2). The figure represent
typical angles profiles for the defect gas~DG! mode, with
five inversion walls. At these relatively high Er coarseni
took place, the net charge is not zero, and the directo
aperiodic. In this particular case the net charge is zero.
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B. Shear-induced texture coarsening mechanisms

The steady state texture of a liquid crystal is given by
balance of nucleation and coarsening processes. Coarse
events limit the lifetime of an inversion wall, and a textu
can be viewed as a balance between birth-death events i
regime that leads to the defect gas and planar modes. In
section we characterize the following texture coarsening p
cesses:~a! wall-wall annihilation ~mode WW!, ~b! a wall-
bounding surface reaction~mode WS!, and~c! wall pinching
~mode WP!. We also characterize the dependence of
coarsening process on the governing length and time s
ratiosR, Er, and De. Since the governing time scales at h
shear rates are the flow time scale@see Eq.~24!#, all transient
results are plotted as a function of straing5ġt. Although De
and Er are related by Eq.~21!, below we emphasize thei
distinct role.

Figure 8~a! shows a computed gray scale visualization
director componentnz (0<y* <1) as a function of strain,
for R5104, De51.2 (Er51.23104), corresponding to wall-
wall interaction in the planar (P) mode. Black represents a
in plane orientation (nz50) and light represents an orienta
4-10
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SHEAR-INDUCED TEXTURAL TRANSITIONS IN FLOW- . . . PHYSICAL REVIEW E 68, 061704 ~2003!
tion along the vorticity (nz51) axis. Forg,70 there are
two oppositely charged inversion walls in the bulk. As stra
increases the walls annihilate,

C111C21⇒0, ~50!

leaving behind a planar director field. The figure shows
manifestation of the attractive interaction between oppo
tively charged walls@see Eq.~50!#. Figure 8~b! shows a com-
puted gray scale visualization of director componentnz (0
<y* <1) as a function of strain forR5104 and De51.8
(Er5RDe51.83104), corresponding to wall pinching in th
planar mode. Black represents in plane orientation (nz50)
and light orientation along the vorticity (nz51). For g
,50 there are two oppositely charged inversion walls in
bulk. As strain increases the walls pinch separately,

C11⇒0, C21⇒0, ~51!

leaving behind a planar director field. Since two walls disa
pear in this case, the net charge is conserved. The fi

FIG. 7. ~a! Steady state twistf and tilt u angles as a function o
dimensionless distancey* , for R5105 Er573104 (De50.7) for
the defect lattice~DL! mode, with two inversion walls in the bulk
At these relatively low Er no coarsening takes place, the net ch
is zero, and the director is periodic.~b! The steady state twistf and
tilt u angles as a function of dimensionless distancey* , for R
5105, and Er51.23105 (De51.2), for the defect gas~DG! mode,
with five inversion walls. At these relatively high Er coarseni
took place, the net charge is not zero, and the director is aperio
06170
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shows a manifestation of molecular elasticity represented
De. When the flow is strong enough, the scalar order par
eter changes since flow time scales are faster than sc
order parameter time scales, and new coarsening routes
pear. Figure 8~c! shows an order parameterS visualization
corresponding to Fig. 8~b!. Light corresponds toS5Seq
50.68 @see Eq.~27!# and black toS50. When the walls
pinch S at the center of the wall decreases to zero, leav
behind a planar field. Figure 8~d! shows a computed gra
scale visualization of director componentnz (0<y* <1) as
a function of strain for R5106, De50.9 (Er5RDe
593105), corresponding to wall-bounding surface intera
tion in the defect lattice mode. Black represents in pla
orientation (nz50) and light orientation along the vorticity
(nz51). For g,80 there are two oppositely charged inve
sion walls in the bulk. As the strain increases one wall
absorbed by the bounding surface.

C211C1/2⇒C21/2, ~52!

leaving behind a single wall in the bulk. The figure shows
manifestation of the attractive interaction between opposi
charged walls@see Eq.~52!#. In this case charge is conserve
since the charge of the lower bounding surface changes f
11/2 before the absorption to21/2 afterwards. Figure 8~d!
is a unique example of a defect-bounding surface interact
Models of surface defect emission have been postulated@43#,
and also observed experimentally@26# but never simulated
with the classical nematodynamics equations.

C. Shear-induced defect nucleation and coarsening mechanism
and texture scaling

Next we characterize the dependence of defect nuclea
rates and coarsening rates as a function of the time
length scales ratios Er,R, and De. For efficiency we refer to
the three coarsening processes~WW, WS, WP!, and to wall
nucleation as defect events. The number of coarsening ev
is denotedC. The number of nucleation events is denoted
N.

Figure 9 shows the total number of nucleated walls dur
dynamical simulations as a function of the Ericksen numb
for R: ~a! 104, ~b! 105, and~c! 106. At sufficiently highR, a
power law regime emerges. ForR5106 and Er.ErADL , the
simulation results are the fitted curve using a power l
model:

N5«Y~Er2ErADL !AEr2ErADL, ~53!

whereY is the Heaviside function. The corresponding valu
of the amplitude«50.0147 forR5106. In terms of length
scales the power law scaling gives, for Er.ErADL ,

H5, fNA11
ErADL

N
'jNA11

ErADL

N
, ~54!

where we used Eqs.~41! and ~53!. The asymptotic regimes
are

N,AErADL, H'jErADL , ~55a!

ge

ic.
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FIG. 8. Computed gray scale visualization of director componentnz (0<y* <1) as a function of strain. Black represents in pla
orientation (nz50) and light orientation along the vorticity (nz51): ~a! wall-wall interaction in a planar mode, Er51.23104, R5104. ~b!
Wall pinching in a planar mode, Er51.83104, R5104. ~c! The order parameterS visualization corresponding to~b!. Light corresponds to
S5Seq50.68 and black toS50. When the walls pinch, the order parameterS at the center of the wall decreases to zero, leaving behin
planar field.~d! Wall-bounding surface interaction in the defect lattice mode, Er593105, R5106.
ca
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N.AErADL, H'jN. ~55b!

The length scale of the texture, t5H/N is given by

, t5
H

«Y~Er2ErADL !AEr2ErADL

. ~56!

Thus in the absence of coarsening the texture length s
decreases with a2 1

2 power law.
Figure 10 shows the total number of coarsening evenC

during the dynamic simulations, as function of the Debo
number forR: ~a! R5104, ~b! R5105, and~c! R5106. For
06170
le

h

all R the most significant mechanism is wall pinching. AsR
increases the rate of pinchingRC increases rapidly with De
The computations show for De.1, the the coarsening pro
cess follows a power law:

C5x~De2DeDLDG!n ~57!

with x529.3 andn'1. For largeR5106 the figure shows
that pinching starts at DeDLDG'1. This condition implies,
using Eq.~21!, that Er'R. This equality implies the follow-
ing equality of length scales:
4-12
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Er'R⇒ H2

, f
2 '

H2

, i
2 ⇒, f', i . ~58!

Thus when the flow length scale is close to the inter

FIG. 9. Number of nucleated walls during dynamical simu
tions as a function of the Ericksen number, forR: ~a! 104, ~b! 105,
and ~c! 106. At sufficiently highR, a power law regime emerges
The points are the simulation results and the solid lines are the fi
curve using a power law model~58!. The amplitude is«50.0147.
06170
l

length scale pinching occurs. Since the flow scale is the w
thickness we also find that pinching occurs whenj', i .

Figure 11 shows the total number of nucleation and an
hilation events during the dynamic simulations, as a funct
of the Deborah number De forR: ~a! R5104, ~b! R5105,
and ~c! R5106. The figure shows the existence of three r

-

ed

FIG. 10. Total number of coarsening eventsC during the dy-
namic simulations, as a function of the Deborah number forR: ~a!
R5104, ~b! R5105, and~c! R5106. For all R the most significant
mechanism is wall pinching. AsR increases the rate of pinchingRC

increases rapidly with De.
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gimes: ~a! Defect nucleation (Er@1, De,1): N.C, Nss
.0. ~b! Defect nucleation and defect coarsening (
'1 – 2): N.C, Nss.0. ~c! Defect coarsening (De.2): N
5C, Nss50. Nss is the number of walls at the steady sta
The indicated critical De for each regime correspond toR

FIG. 11. Total number of nucleation and annihilation eve
during the dynamic simulations, as function of the Deborah num
for R: ~a! R5104, ~b! R5105, and ~c! R5106. The figure shows
the following dependences. De,1: nucleation rate.annihilation
rate, Nss.0; De'122: nucleation rate'annihilation rate,Nss

.0; De.2: nucleation rate5annihilation rate,Nss50.
06170
.

'106 but for lowerR small adjustments of order 1 occur. I
the defect nucleation regime the length scale ordering isH
!, f', i , and walls nucleate but do not pinch. In the inte
mediate nucleation-coarsening regime the length scale or
ing is H!, f;, i , and thus nucleation and pinching occur
similar rates. Finally, in the coarsening regime,H!, i., f ,
and pinching becomes equal with the nucleation. Note t
since , f'j @see Eq.~58!# when the wall thicknessj is
smaller than the internal length scale, i , walls pinch.

Figure 12 shows a gray-scale plots of the out-of pla
director componentnz as a function of straing, for R
5105; nz51 corresponds to white andnz50 to black, for
the following De ~Er!: ~a! 1.2 (1.23105), ~b! 1.6
(1.63105), and~c! 2 (23105), representative of the defec
gas and planar modes. In Fig. 12~a! five inversion walls
nucleate but since De51.2 andR5105, there is no annihi-
lation, and the net charge is zero. In Fig. 12~b!, De51.6
there is one wall-wall annihilation~WW! event, leaving be-
hind a defect gas mode with zero topological charge.
Fig. 12~c! seven inversion walls nucleate but since De52
seven pinching~WP! events take place, leaving behind
planar mode.

Figure 13~a! shows the number of inversion walls as
function of strain corresponding to Fig. 12. Figure 13~b!
shows the corresponding total dimensionless long range
energy as a function of strain, computed by integrating
dimensionless free energy density given in Eq.~9!. For the
higher Er condition, the dimensionless long range ene
function illustrates the existence of three temporal regio
~a! Early stage (g,30): the out-of-plane orientation and th
long range energy are close to zero.~b! Intermediate stage
nucleation of walls and an increase of long range energy.~c!
Late stage: coarsening by annihilation and a steplike ene
decrease. Each wall that disappears produces an energy
decrease. For low Er the response is sigmoidal since
coarsening takes place. For the highest Er the response
pulse since coarsening has been eliminated all the walls

Figure 14~a! shows a gray scale plot of the out-of plan
director componentnz as a function of strain forR5106 and
De512 (Er51.23107). When De.1, the number of walls
increase@in accord with Eq.~44b!# (Er51.63107). At suf-
ficiently high De (De>16) the layered structure is replace
by a homogeneously aligned system@Fig. 14~b!#. The figures
show that as De increases the pinching occurs at smaller
smaller strains.

D. Shear-induced texture formation

Models and mechanisms for shear-induced texture for
tion have been investigated experimentally@17# but are not
well understood theoretically. Here we refer to the texture
the density of defects; the only defects in our on
dimensional simulations are inversion walls. The long sta
ing issue of interest is what mechanisms contribute to
nucleation and coarsening processes of textures. The pre
tion of a shear-induced defect mode by the classical mo
of nematodynamics provides insights into these questions
this section we characterize the parametric dependence o
defect mode length scale as a function of the governing

s
r
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FIG. 12. Gray-scale plots of the out-of plane director componentnz as a function of strain, forR5105; nz51 corresponds to white and
nz50 to black, for the following Er:~De! ~a! 1.23105 ~1.2!, ~b! 1.63105 ~1.6!, and ~c! 23105 ~2!, representative of the defect gas an
planar modes.
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15
be-
tios of time and length scales:R, Er, and De. To characteriz
the steady state texture length scale, t under shear we use it
reciprocal, or the number of inversion walls at steady st
Nss.

Figure 15~a! shows the number of inversion wallsNss at
steady state as a function of the Ericksen number forR, 104,
105, 53105, and 106, corresponding to the defect mode
The figure shows that asR increases the number of wal
increases. The figure establishes that the appearance o
defect modes is only a function of Er, but is independent
R. The figure shows that when Er,ErADL'104 no walls are
observed for all values ofR. The maximum number of walls
depends onR and Er. For example, forR5106, 17 walls are
06170
te

the
f

found at Er5106, but for R5105 only five walls emerge at
Er5105. Figure 15~b! shows the number of inversion wall
Nss at steady state as a function of the Deborah De num
for R: 104, 105, and 106. The maximum number of walls
occurs at De>1 and the upper threshold of the defect g
mode is DeDGP>2 for all values ofR. The figures show tha
the texture behavior~i.e., number of walls! for De,1 is
controlled by the Ericksen number while for De>1 it is con-
trolled by the Deborah number. Furthermore for De.2, tex-
tural features are eliminated and a monodomain~planar
mode! emerges. The computational results shown in Figs.
can be rationalized and approximated by the power law
havior explained in conjunction with Eqs.~53! and ~57!, as
4-15
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follows. In terms of the De number, the number of wallsNss
at steady state is given by

Nss5N2C. ~59!

Using the power law results we find, for De<DeDGP,

~60!

indicating that the nucleation growth scales withADe and is
weaker than the coarsening rate, which scales with (Dn,
andn'1. For De.DeDGP, the number of walls isNss50.

FIG. 13. ~a!Number of inversion walls as a function of strain fo
the same values ofEr number andR as in Fig. 12.~b! Total dimen-
sionless long range free energy as a function of straing, computed
by integrating the dimensionless free energy density given in
~9!. The dimensionless long range energy function illustrates
existence of three temporal regions: early stage (g,30), the out-
of-plane orientation and the long range energy are close to z
intermediate stage; nucleation of walls and increase of long ra
energy; and late stage; coarsening by annihilation and steplike
ergy decrease. Each wall that disappears produces an energy
decrease.
06170
Using Eq. ~60!, with n51, we find that the maximum
number of wallsNssmaxis

Nssmax5«ARDeDLDG2ErADL, RDeDLDG.ErADL .
~61!

The inversion walls vanish (Nss50) at the upper critical
Deborah number DeDGP:

q.
e

o;
ge
n-
tep

FIG. 14. Gray-scale plots of the out-of plane director compon
nz as a function of strain, for (nz51 corresponds to white andnz

50 to black!. ~a! R5106, De512 (Er51.23107). ~b! R5106,
De516 (Er51.63107). When De.1, the number of walls in-
crease@according to Eq.~44!# (Er51.63107). At sufficiently high
De (De>16) the defect gas is replaced by a homogeneously alig
system~b!.
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«ARDeDGP2ErADL5x~DeDGP2DeDLDG!⇒DeDGP

'DeDLDG
2 , ~62!

where we used the fact thatR@1, and assumed that DeDGP
@DeADL . The scaling predicts that, for largeR, DeDGP is
independent ofR, in agreement with computations. ForR
5106, we find that when DeDLDG51.4 the scaling predicts
DeDGP51.96 and the computations give DeDGP52.1.
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Figure 16 shows the number of wallsNss as a function of
the De number forR5106, from scaling~full line! and com-
putations~squares!. The figure shows that scaling results@Eq.
~60!# are in excellent agreement with the computatio
(Nssmax517.33 from scaling and 17 from the computation!,
and hence explain the genesis and extinction of walls
flow-aligning liquid crystal polymers.

In terms of texture length scales, Eq.~60!, and , t
5H/Nss,
, t5
H

«Y~Er2ErADL !AEr2ErADL2Y~De2DeDLDG!x~De2DeDLDG!
, ~63!
e
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where we wrote the nucleation in terms of Er and the coa
ening in terms of De. The smallest texture length scale i

, t5
H

«AErDLDG2ErADL

. ~64!

Figure 17 shows the dimensionless length scale as a f
tion of De for R5106. The figure clearly implies that in the
nucleation regime the texture refinement follows the sh
rate scaling

, t}
1

Aġ2a
, ~65!

while the coarsening follows

, t}
1

ġ2bAġ2a2c
, ~66!

where a, b, and c are constants. The characteristic leng
scale of the emerging texture is found to be in agreem
with scaling proposed by Marrucci for tumbling nemati
@59#.

Lastly we characterize the role of the energy ratioR. Fig-
ure 18 shows the maximum number of the twist wallsNssmax
at steady state as a function ofR. ForR smaller than or equa
to 103, our simulations predict the absence of a defect mo
The data can be fitted to a power law model~solid line!,
given by

Nssmax5n1•AR2n2, ~67!

wheren150.017, andn257142. Using Eq.~61! we find that

Nssmax5«ADeDLDGAR2
ErADL

DeDLDG
, ~68!

n15«ADeDLDG, n25
ErADL

DeDLDG
. ~69!
s-

c-
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Thus increasing the energy ratioR decreases the textur
length scale since the coarsening process is delayed to h
and higher shear rates.

V. DISCUSSION

Shear-induced textural transformations in flow-aligni
and nonaligning low molar mass nematics, lyotropic nema
polymers, and thermotropic nematic polymers have been
cently reviewed@10,18#. The most abundant experiment
data on quantitative texture evolution are for nonaligni
lyotropic semiflexible nematic polymers@31,32#. Since the
present model captures the dynamics of flow-aligning th
motropic nematic polymers, a validation of the result w
the quantitative data@31,32# is not possible.

In Refs. @31,32# samples of lyotropic liquid crystalline
polymers ~PBG, racemic mixture, MW: 118 000, 198 00
and 298 000! are sheared in range of Ericksen numbers@32#:
1,Er,107, with sample thickness 10–500mm @NB: the
definition of Er in Refs.@31,32# is slightly different than Eq.
~20a!#. The observed textural transitions with increasi
Ericksen number@31# are controlled by the Deborah numb
when the Deborah number approaches or exceeds unity.
ing optical microscopy, the texture is characterized by
presence of stripes parallel to the flow. As shear rate
creases the stripes parallel to the flow become more inte
then less intense and finally disappear at higher shear r
The transition to the monodomain textures depends on
molecular weight~i.e., De!: the higher the molecular weigh
the higher the shear rate necessary to eliminate the tex
Furthermore for De.5, textures-free samples are obtaine
For a fixed geometry and set of material properties
present model predicts as the shear rate increases the te
transition cascade: unoriented monodomain⇒defect lattice
⇒defect gas⇒oriented monodomain.

VI. CONCLUSIONS

The classical theories of nematodynamics applied to th
motropic rodlike shear-flow aligning nematic polymers pr
dict that, as the shear rate increases, the pathway betwee
4-17
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D. GRECOV AND A. D. REY PHYSICAL REVIEW E68, 061704 ~2003!
oriented nonplanar state and an oriented planar stat
through texture formation and coarsening. The two shear-
dependent dimensionless numbers that control the tex
formation and coarsening process are Ericksen Er and D
rah De numbers. The emergence of texture is independe

FIG. 15. ~a! The number of inversion walls at steady stateNssas
a function of the Ericksen number forR: 104, 105, 53105, and
106, corresponding to the defect lattice and defect gas modes. AR
increases the number of walls increases. The appearance o
defect modes is only a function of Er, but is independent ofR. For
Er,ErADL'104 no walls are observed for all values ofR, ~b! The
maximum number of inversion wallsNss as a function of the Debo
rah De number forR: 104, 105, and 106. The maximum number of
walls occurs at De>1 and the upper threshold of the defect g
mode is DeDGP;2 for all values ofR. The texture behavior~i.e.,
number of walls! for De,1 is controlled by the Ericksen numbe
while for De>1 it is controlled by the Deborah number. For D
.2, textural features are eliminated and a monodomain~planar
mode! emerges.
06170
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FIG. 16. The number of wallsNss as a function of De numbe
for R5106, from scaling ~full line! and computations~squares!.
Scaling results@Eq. ~60!# are in excellent agreement with comput
tions, and hence explain the genesis and extinction of walls in fl
aligning liquid crystal polymers.

FIG. 17. Dimensionless length scale of the texture as a func
of De for R5106.

FIG. 18. Maximum number of the twist wallsNss maxat steady
state as a function ofR. For R smaller than or equal with 1000, ou
simulations predict the absence of the defect mode. The data ca
fitted to a power law model~solid line!, given by Eq.~67!, where
n150.017 andn257142.
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the Deborah number, and occurs at Er5104. As the shear
rate increases and Er.104 the first texture that arises is
lattice of inversion walls, whose net topological charge
zero. Further increases of the shear rate, brings De close
ignites the coarsening processes, and replaces the defec
tice with a defect gas. The topological charge of the def
gas is undetermined. The smallest texture length scal, t
occurs at the defect lattice-defect gas transition. In the de
lattice regime the texture length scale, t decreases with in-
creasing shear rate as, t}(ġ2a)21/2, while in the defect gas
regime it increases as, t}„ġ2bA(ġ2a)2c…21. Finally
when De.2, a monodomain state emerges, and the tex
-

ds

J.

ys

s

e

d

an

ys
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vanishes since coarsening overpowers defect nucleation.
found that the texture transition cascade unorien
monodomain⇒defect lattice⇒defect gas⇒oriented monodo-
main is remarkably consistent with the textural transition
sheared lyotropic tumbling nematic polymers.
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